Main Outcomes of the Systolic Blood Pressure Intervention Trial (SPRINT) in Patients Age 75 and Older

Mark A. Supiano, M.D.
Professor and Chief, Geriatrics Division
Director, VA Salt Lake City GRECC
Director, University of Utah Center on Aging

Jeff D. Williamson, MD, MHS
Professor and Interim Chair, Department of Internal Medicine
Chief, Geriatric Medicine and Gerontology
Clinical Director, J Paul Sticht Center on Aging

Wake Forest® Baptist Medical Center
Intensive vs Standard Blood Pressure Control and Cardiovascular Disease Outcomes in Adults Aged ≥75 Years: A Randomized Clinical Trial

Published May 19, 2016

Available at jama.com and on The JAMA Network Reader at mobile.jamanetwork.com
Outline

1. Background – How low should we go?
2. SPRINT-Senior
 a) Design and geriatric outcome measures: Frailty status and gait speed
 b) Baseline characteristics
 c) Results by frailty status and gait speed
 d) Adverse events including injurious falls
3. Summary and Conclusions
Prevalence of Hypertension: Age and Sex

- Men
- Women

AGS 2016 Symposium
American Heart Association
SBP vs stroke mortality risk relationship

- No apparent threshold
- Stroke mortality risk doubles for every 20/10 mm Hg increase above 115/75
- 20 mm Hg increase associated with a 10-fold larger annual absolute stroke risk in 80s vs. 50s.

AGS 2016 Symposium

Lewington Lancet 2002
Healthy age 60 to 80: What SBP Target?

1. < 120 mm Hg
2. < 140 mm Hg
3. < 150 mm Hg
4. < 160 mm Hg
5. < (100 + age) mm Hg
How low should we go?

- “The panel agreed that more research is needed to identify optimal goals of SBP…” JNC 8
- Equipoise
- Systolic Blood Pressure Intervention Trial (SPRINT) launched in 2010
Background – SPRINT Senior

- Optimal SBP target especially controversial in older, frail patients
 - Epidemiological evidence of inverse relationship between SBP and mortality
 - Concerns regarding falls and fall-related injury due to antihypertensive therapy
 - Cognitive and quality of life outcomes not certain

- ARRA-funded initiative within SPRINT to enhance the number of persons aged 75+ enrolled in the trial

- Ambulatory, community-dwelling older adults

- No nursing home or assisted living facility residents or prevalent dementia enrolled (at baseline)
Major Exclusion Criteria

- Stroke (SPS3)
- Diabetes mellitus (ACCORD)
- Congestive heart failure (symptoms or EF < 35%)
- CKD with eGFR < 20 mL/min/1.73m² (MDRD)
- Standing BP < 110 mm Hg
BP Measurement in SPRINT: Automated Office BP (AOBP)

- Visit BP was the average of 3 seated office BP measurements obtained using an automated measurement device: Omron 907XL.
- Appropriate cuff size was determined by arm circumference.
- Participant was seated with back supported and arm bared and supported at heart level.
- Device was set to delay 5 minutes to begin 3 BP measurements – research staff was trained to push start button and leave exam room during the 5 minute delay and measurements, during which time participant refrained from talking.
Geriatric Outcome Measures

- **Assessments**
 - Gait speed – 4 m walk
- **Frailty status**
- **Cognitive battery and brain MRI – SPRINT-MIND**
- **Adverse Events**
 - PHQ-9 and Health Related Quality of Life
 - Falls and injurious falls
 - Orthostatic hypotension +/- dizziness
 - Hospitalizations and Nursing home placement
Frailty Index

- Deficit accumulation approach
- Assess a large number of aging-related deficits, usually at least 30 deficits
- Scores range from 0 to 1 – higher values denote more deficits
- Values > 0.7 not observed

Relationship of FI with Age

- Single dash lines: Estimates from National Long Term Care Survey

Relationship of SPRINT Cohort FI with Age

- Single dash lines: Estimates from National Long Term Care Survey
 Kulminski et al. Mech Ageing Dev 2006;127:840-8

- Double dash lines: 10-year mean FI values from Survey of Health, Ageing and Retirement in Europe (SHARE)

- Solid lines: Fit based on local polynomial regression in SPRINT with 95% CIs (shaded areas)
Adverse Events by Frailty Status

Baseline Characteristics: Participants 75 years or older

<table>
<thead>
<tr>
<th></th>
<th>Intensive N=1,317</th>
<th>Standard N=1,319</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>79.8 ± 3.9</td>
<td>79.9 ± 4.1</td>
<td>0.405</td>
</tr>
<tr>
<td>Gender (female)</td>
<td>499 (37.9)</td>
<td>501 (38)</td>
<td>0.992</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td>0.879</td>
</tr>
<tr>
<td>White</td>
<td>977 (74.2)</td>
<td>987 (74.8)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>225 (17.1)</td>
<td>226 (17.1)</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>89 (6.8)</td>
<td>85 (6.4)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>26 (2)</td>
<td>21 (1.6)</td>
<td></td>
</tr>
<tr>
<td>History of CVD</td>
<td>338 (25.7)</td>
<td>309 (23.4)</td>
<td>0.197</td>
</tr>
<tr>
<td>10-year Framingham risk (%)</td>
<td>24.2 (16.8-32.8)</td>
<td>25 (17-33.4)</td>
<td>0.475</td>
</tr>
<tr>
<td>Number of antihypertensive meds</td>
<td>1.9 ± 1</td>
<td>1.9 ± 1</td>
<td>0.173</td>
</tr>
<tr>
<td>Baseline blood pressure (mmHg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>141.6 ± 15.7</td>
<td>141.6 ± 15.8</td>
<td>0.986</td>
</tr>
<tr>
<td>Diastolic</td>
<td>71.5 ± 11</td>
<td>70.9 ± 11</td>
<td>0.177</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>27.8 ± 4.9</td>
<td>27.7 ± 4.6</td>
<td>0.464</td>
</tr>
<tr>
<td>eGFR (CKD-EPI, ml/min/1.73m²)</td>
<td>61.4 ± 17</td>
<td>61.2 ± 16.7</td>
<td>0.764</td>
</tr>
<tr>
<td>eGFR<60 ml/min/1.73m²</td>
<td>614 (46.9)</td>
<td>608 (46.4)</td>
<td>0.859</td>
</tr>
<tr>
<td>Urine albumin / creatinine (mg/g)</td>
<td>13 (7.2-31.6)</td>
<td>13.4 (7.2-33.4)</td>
<td>0.505</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>181.4 ± 39</td>
<td>181.8 ± 38.7</td>
<td>0.767</td>
</tr>
<tr>
<td>Fasting plasma glucose (mg/dL)</td>
<td>97.9 ± 12.1</td>
<td>98.2 ± 11.6</td>
<td>0.606</td>
</tr>
</tbody>
</table>

Values are N (%), mean ± SD, or median (IQR)
Baseline Characteristics: Participants 75 years or older

<table>
<thead>
<tr>
<th></th>
<th>Intensive N=1,317</th>
<th>Standard N=1,319</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gait speed (m/s)</td>
<td>0.90 (0.77-1.05)</td>
<td>0.92 (0.77-1.06)</td>
<td>0.375</td>
</tr>
<tr>
<td>Gait speed <0.8 m/s</td>
<td>371 (29.7)</td>
<td>369 (29.2)</td>
<td>0.853</td>
</tr>
<tr>
<td>Frailty Index</td>
<td>0.18 (0.13-0.23)</td>
<td>0.17 (0.12-0.22)</td>
<td>0.004</td>
</tr>
<tr>
<td>Frailty Status</td>
<td></td>
<td></td>
<td>0.013</td>
</tr>
<tr>
<td>Fit (FI≤0.10)</td>
<td>159 (12.1)</td>
<td>190 (14.5)</td>
<td></td>
</tr>
<tr>
<td>Less fit (0.10<FI≤0.21)</td>
<td>711 (54.3)</td>
<td>745 (56.9)</td>
<td></td>
</tr>
<tr>
<td>Frail (FI>0.21)</td>
<td>440 (33.6)</td>
<td>375 (28.6)</td>
<td></td>
</tr>
<tr>
<td>MoCA score (0 to 30)</td>
<td>22 (19-25)</td>
<td>22 (19-25)</td>
<td>0.701</td>
</tr>
<tr>
<td>VR-12 Physical Component Summary Score</td>
<td>43.8 ± 10.2</td>
<td>44.3 ± 9.8</td>
<td>0.242</td>
</tr>
<tr>
<td>VR-12 Mental Component Summary Score</td>
<td>54.8 ± 8.5</td>
<td>55.3 ± 8.2</td>
<td>0.135</td>
</tr>
</tbody>
</table>

(MoCA) Montreal Cognitive Assessment
(VR-12) Veteran's RAND 12-item Health Survey
Values are N (%), mean ± SD, or median (IQR)
Systolic BP During Follow-up

Delta SBP: 11.4 mmHg (95% CI: 10.8 to 11.9 mmHg)

Standard-treatment
134.8 mmHg
95% CI (134.3, 135.)

Intensive-treatment
123.4 mmHg
95% CI (123.0, 123.9)

of classes of antihypertensive meds

of Participants

AGS 2016 Symposium
Primary outcome includes non-fatal myocardial infarction (MI), acute coronary syndrome not resulting in MI, non-fatal stroke, non-fatal acute decompensated heart failure, and CVD death.
Cumulative Hazards for SPRINT Primary Outcome by Frailty Status

- **Fit**
 - Standard: 190
 - Intensive: 159
 - HR: 0.47 (95% CI: 0.13 to 1.39)

- **Less Fit**
 - Standard: 745
 - Intensive: 711
 - HR: 0.63 (95% CI: 0.43 to 0.91)

- **Frail**
 - Standard: 375
 - Intensive: 440
 - HR: 0.68 (95% CI: 0.45 to 1.01)
Cumulative Hazards for SPRINT Primary Outcome by Gait Speed

Gait Speed 0.8 m/s or greater
- Standard-treatment
- Intensive-treatment

HR: 0.67 (95% CI: 0.47 to 0.94)

Gait Speed <0.8 m/s
- Standard-treatment
- Intensive-treatment

HR: 0.63 (95% CI: 0.40 to 0.99)
SPRINT Follow-up Experience:
Withdrawn Consent & Loss to Follow-up

<table>
<thead>
<tr>
<th></th>
<th>Intensive-treatment</th>
<th>Standard-treatment</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>%/year</td>
<td>N</td>
<td>%/year</td>
</tr>
<tr>
<td>Overall</td>
<td>62</td>
<td>1.55 (1.21, 1.99)</td>
<td>64</td>
<td>1.62 (1.27, 2.07)</td>
</tr>
<tr>
<td>Frailty Status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fit</td>
<td>2</td>
<td>0.41 (0.10, 1.62)</td>
<td>4</td>
<td>0.69 (0.26, 1.85)</td>
</tr>
<tr>
<td>Less fit</td>
<td>31</td>
<td>1.43 (1.01, 2.03)</td>
<td>33</td>
<td>1.47 (1.04, 2.06)</td>
</tr>
<tr>
<td>Frail</td>
<td>26</td>
<td>1.97 (1.34, 2.89)</td>
<td>22</td>
<td>1.98 (1.30, 3.00)</td>
</tr>
<tr>
<td>Gait Speed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥0.8 m/s</td>
<td>37</td>
<td>1.38 (1.00, 1.91)</td>
<td>35</td>
<td>1.29 (0.93, 1.80)</td>
</tr>
<tr>
<td><0.8 m/s</td>
<td>20</td>
<td>1.81 (1.17, 2.81)</td>
<td>24</td>
<td>2.20 (1.47, 3.28)</td>
</tr>
<tr>
<td>Missing</td>
<td>5</td>
<td>2.38 (0.99, 5.71)</td>
<td>5</td>
<td>3.08 (1.28, 7.41)</td>
</tr>
</tbody>
</table>

(%/year) Percentage of participants withdrawing consent or lost to follow-up per year. (HR) Hazard Ratio based on competing risks model accounting for death.
SPRINT Follow-up Experience: Withdrawn Consent & Loss to Follow-up

(%/year) Percentage of participants withdrawing consent or lost to follow-up per year. (HR) Hazard Ratio based on competing risks model accounting for death.
Serious Adverse Events, by treatment group in SPRINT participants > 75 years

All p>0.05

Intensive-treatment
Standard-treatment

% of participants experiencing at least one SAE

Overall: 48.4% vs. 48.3%
Fit: 31.4% vs. 34.7%
Less Fit: 46.8% vs. 45.8%
Frail: 57% vs. 60.5%
≥ 0.8 m/s: 47.6% vs. 46.1%
<0.8 m/s: 50.4% vs. 52.8%

AGS 2016 Symposium

24
Conditions of Interest for Participants > 75 Years

<table>
<thead>
<tr>
<th>Conditions of Interest</th>
<th>Intensive-treatment</th>
<th>Standard-treatment</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N with event (%)</td>
<td>N with event (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>214 (16.2)</td>
<td>190 (14.4)</td>
<td>1.18 (0.97, 1.44)</td>
<td>0.106</td>
</tr>
<tr>
<td>Syncope</td>
<td>32 (2.4)</td>
<td>19 (1.4)</td>
<td>1.71 (0.97, 3.09)</td>
<td>0.066</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>39 (3.0)</td>
<td>32 (2.4)</td>
<td>1.23 (0.76, 2.00)</td>
<td>0.401</td>
</tr>
<tr>
<td>Electrolyte Abnormality</td>
<td>53 (4.0)</td>
<td>36 (2.7)</td>
<td>1.51 (0.99, 2.33)</td>
<td>0.058</td>
</tr>
<tr>
<td>Injurious Fall</td>
<td>65 (4.9)</td>
<td>73 (5.5)</td>
<td>0.91 (0.65, 1.29)</td>
<td>0.605</td>
</tr>
<tr>
<td>Acute Kidney Injury or Acute Renal Failure</td>
<td>72 (5.5)</td>
<td>53 (4.0)</td>
<td>1.41 (0.98, 2.04)</td>
<td>0.061</td>
</tr>
</tbody>
</table>
Conditions of Interest for Participants > 75 Years

<table>
<thead>
<tr>
<th>Condition</th>
<th>Intensive-treatment</th>
<th>Standard-treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypotension</td>
<td>2.4%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Syncope</td>
<td>3%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>2.9%</td>
<td>3%</td>
</tr>
<tr>
<td>Electrolyte Abnormality</td>
<td>4%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Injurious Fall</td>
<td>4.9%</td>
<td>5.5%</td>
</tr>
<tr>
<td>AKI / ARF</td>
<td>5.5%</td>
<td>4%</td>
</tr>
</tbody>
</table>
Conditions of Interest for Participants > 75 Years By Frailty Status and Gait Speed
Number of Participants with a Monitored Clinical Measure During Follow-up

<table>
<thead>
<tr>
<th>Monitored Clinical Events</th>
<th>Intensive-treatment N with event (%)</th>
<th>Standard-treatment N with event (%)</th>
<th>HR (95% CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory Measures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium<130 mmol/L</td>
<td>69 (5.2)</td>
<td>45 (3.4)</td>
<td>1.56 (1.07, 2.30)</td>
<td>0.02</td>
</tr>
<tr>
<td>Sodium>150 mmol/L</td>
<td>1 (0.1)</td>
<td>0 (0.0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Potassium<3 mmol/L</td>
<td>17 (1.3)</td>
<td>11 (0.8)</td>
<td>1.50 (0.69, 3.37)</td>
<td>0.303</td>
</tr>
<tr>
<td>Potassium>5.5 mmol/L</td>
<td>69 (5.2)</td>
<td>65 (4.9)</td>
<td>1.01 (0.71, 1.42)</td>
<td>0.972</td>
</tr>
<tr>
<td>Signs and Symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orthostatic hypotension</td>
<td>277 (21.0)</td>
<td>288 (21.8)</td>
<td>0.90 (0.76, 1.07)</td>
<td>0.241</td>
</tr>
<tr>
<td>Orthostatic hypotension with dizziness</td>
<td>25 (1.9)</td>
<td>17 (1.3)</td>
<td>1.44 (0.77, 2.73)</td>
<td>0.252</td>
</tr>
</tbody>
</table>
Generalizability

Who may benefit?
Conclusions

- The SPRINT-Senior cohort is representative of community dwelling older adults.
- Rates of hypotension, syncope, electrolyte abnormalities, kidney injury were higher in the intensive arm, but not rates of injurious falls or orthostatic hypotension.
- Overall, benefits of more intensive BP lowering – 33% reduction in primary CV outcome and 32% reduction in total mortality – exceeded the potential for harm, even among the most frail older patients.
Acknowledgements

- 9,361 volunteers who agreed to participate in SPRINT
- Investigators and staff, including Steering Committee, other principals at the 5 Clinical Center Networks, 102 participating Clinical Centers, Coordinating Center, Central Laboratory, ECG Reading Center, MRI Reading Center, and Drug Distribution Center
- National Institutes of Health
 - National Heart, Lung, and Blood Institute (NHLBI)
 - National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
 - National Institute on Aging (NIA)
 - National Institute of Neurological Disorders and Stroke (NINDS)
- SPRINT Data and Safety Monitoring Board (DSMB)
- Takeda and Arbor Pharmaceuticals (donated 5% of medication used)
Acknowledgements

Nicholas M. Pajewski, PhD

Questions...
Forthcoming SPRINT Results

- SPRINT-MIND Cognitive and brain MRI outcomes
- Renal
- Health related quality of life
- Adverse events (nursing home placement), safety (falls, orthostasis), cost analysis
Healthy age 60 to 80+: What SBP Target?

1991 - 2015

SHEP
HYVET
JNC7
JNC8
SPRINT

100 110 120 130 140 150 160 170 180

AHA 2016

AGS 2016 Symposium
Caveats

- Exclusions:
 - Diabetes, stroke, heart failure
 - Standing BP < 110 mm Hg
 - Community living, ambulatory

- BP measurement protocol
Frailty Status in HYVET

- Frailty index distribution in HYVET matches general population > 80 years
- No evidence interaction between effect of treatment and frailty
- “Both the frailer and the fitter older adults with hypertension appeared to gain from treatment.”

Frailty index adjusted treatment effects (n=2,656)

<table>
<thead>
<tr>
<th></th>
<th>Stroke</th>
<th>CV Events</th>
<th>Total Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard ratios (95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>0.64</td>
<td>0.59</td>
<td>0.83</td>
</tr>
<tr>
<td>(0.42–0.96)</td>
<td>(0.45–0.77)</td>
<td>(0.66–1.04)</td>
<td></td>
</tr>
</tbody>
</table>